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Topology of cosmic domains and strings 

T W B Kibble 
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, UK 

Received 11 March 1976 

Abstract. The possible domain structures which can arise in the universe in a spontaneously 
broken gauge theory are studied. It is shown that the formation of domain walls, strings or 
monopoles depends on the homotopy groups of the manifold of degenerate vacua. The 
subsequent evolution of these structures is investigated. It is argued that while theories 
generating domain walls can probably be eliminated (because of their unacceptable 
gravitational effects), a cosmic network of strings may well have been formed and may have 
had important cosmological effects. 

1. Introduction 

Gauge theories with spontaneous symmetry breaking have come to play a central role in 
elementary particle theory. Kirzhnits (1972), and Kirzhnits and Linde (1972, 1974) 
suggested that as in ferromagnets and superconductors the full symmetry may be 
restored above some critical temperature. That this actually happens in a class of 
theories where the symmetry breaking occurs through the acquisition of a vacuum 
expectation value by an elementary scalar field has been demonstrated by Weinberg 
(1974) while Jacobs (1974) and Harrington and Yildiz (1975) have examined models of 
dynamical symmetry breaking in which the role of the order parameter is played by a 
composite field operator. (See also Bernard 1974, Dolan and Jackiw 1974, Dashen eta1 
1975, and Linde 1975.) 

In the hot big-bang model, the universe must at one time have exceeded the critical 
temperature so that initially the symmetry was unbroken. It is then natural to enquire 
whether as it expands and cools it might acquire a domain structure, as in a ferromagnet 
cooled through its Curie point. Zel’dovich et a1 (1974; see also Kobzarev et a1 1974) 
have discussed this question, and in particular pointed out the important gravitational 
effects to be expected of domain walls. Everett (1974) has studied the propagation of 
waves across a domain boundary. 

The aim of this paper is to discuss the topology and scale of the possible cosmic 
structures that might arise. After reviewing the results of Weinberg and others on phase 
transitions in a simple class of models in 0 2, we discuss in 0 3 the initial formation of 
‘protodomains’ as the universe cools. The possible topological configurations are 
examined in 0 4. These include domain walls, strings and monopoles. We show that 
their occurrence is largely determined by the topology of the manifold M of degenerate 
vacuum states (specifically by its homotopy groups). (Coleman (1976) has stated the 
same result in a different context. In the case of monopoles it has been proved by Krive 
and Chudnovskii 1975.) In 0 5 we examine the later evolution of these structures. We 
show that domain walls can be of two main types with very different transmissivity, and 
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that highly reflecting walls may behave very differently from the essentially transparent 
ones considered by Zel’dovich et al(1974). In all cases however the typical scale of the 
domain structure will grow with time until it is comparable with the radius of the 
universe. Hence the argument of Zel’dovich etal, to the effect that domain walls cannot 
have persisted beyond the recombination era because their gravitational effect would 
have destroyed the isotropy of the 3 K background radiation, applies. If domain walls 
existed they must have disappeared by then. This in turn is possible only if the universe 
has a small built-in asymmetry. The exclusion of theories generating domain walls is an 
interesting example of a restriction on elementary particle theories derived from 
cosmology. 

The general conclusion is that there is a rich variety of possible topological 
structures which might have appeared in the early history of the universe. Few of these 
(monopoles excepted) are likely to be stable enough to have survived to the present, but 
they may nevertheless be of importance in understanding the history of the universe, for 
example the evolution of galaxies. The conclusions are summarized in more detail in 
§ 6. 

2. The phase transition 

Although our discussion will be quite general, for illustrative purposes it is convenient 
to have a specific example in mind. Let us consider an N-component real scalar field 4 
with a Lagrangian invariant under the orthogonal group O(N),  and coupled in the usual 
way to$N(N- 1) vector fields represented by an antisymmetricmatrix B,. We can take 

The coupling constants g and e are not necessarily related, but we shall assume that they 
are of a similar order of magnitude (and both small). 

At zero temperature the O(N)  symmetry here is spontaneously broken to O(N-  l), 
with 4 acquiring a vacuum expectation of order q. In the tree approximation, 

(4>* = q2 (2) 

so that the manifold of degenerate vacua is an ( N -  1) sphere S N - ’ .  
Let us recall the more general situation. In a model with symmetry group G, the 

vacuum expectation value (4) will be restricted to lie on some orbit of G. If H is the 
isotropy subgroup of G at one point (+), i.e. the subgroup of transformations leaving 
(4) unaltered, then the orbit may be identified with the coset space M =  G/H. 
Physically H is the subgroup of unbroken symmetries, and M is the manifold of 
degenerate vacua. As we shall see, the topological properties of M (specifically its 
homotopy groups) largely determine the geometry of possible domain structures. 

At a finite temperature T the expectation value of + in a thermal equilibrium state 
must be found by minimizing the free energy, or equivalently the temperature- 
dependent effective potential. The leading temperature dependence at high T and 
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small coupling constant comes from the one-loop diagrams (Weinberg 1974, Dolan and 
Jackiw 1974, Bernard 1974). Including these terms, we have 

V ( 4 )  = i g 2 ( + 2  - q2)2 +&[(N+2)g2+6(N-  1)e2]T2~2,  (3) 

as in the Landau-Ginsberg theory of superconductivity. (See for example Schrieff er 
1964.) The minimum occurs at 4 = 0 and so the symmetry is unbroken for T larger than 
the transition temperature 

This is the normal phase. Below T,, we have an ordered phase: 4 acquires a vacuum 
expectation value, which plays the role of the order parameter, and whose magnitude is 
determined by 

Thus the manifold of degenerate equilibrium states for all T < T, is an ( N -  1) sphere, 

In more complicated models there may be several transition temperatures, and as 
Weinberg (1974) has shown the symmetry may even increase as the temperature drops. 
However we shall not consider such cases, but assume a single transition temperature 
above which the symmetry is unbroken. 

M = O ( N ) / O ( N -  l)=SN-'.  

3. Formation of protodomains 

Let us consider a 'hot big-bang' universe and examine what happens as it expands and 
cools through the transition temperature T,. In unified models of weak and elec- 
tromagnetic interactions T, is of the order of the square root of the Fermi coupling 
constant, Gk'2, i.e. a few hundred GeV. Thus the transition occurs when the universe is 
aged between lo-'' and seconds and far above nuclear densities. In other 
models, however, T, might be considerably smaller and the transition would occur 
correspondingly later. 

For T near T, there will be large fluctuations in 4. Once T has fallen well below T,, 
we may expect 4 to have settled down with a non-zero expectation value corresponding 
to some point on M. No point is preferred over any other. As in an isotropic 
ferromagnet cooled below its Curie point the choice will be determined by whatever 
small fields happen to be present, arising from random fluctuations. Moreover this 
choice will be made independently in different regions of space, provided they are far 
enough apart. (What is far enough we shall discuss shortly.) Thus we can anticipate the 
formation of an initial domain structure with the expectation value of 4, the order 
parameter, varying from region to region in a more or less random way. Of course for 
energetic reasons a constant or slowly varying ( 4 )  is preferred and so much of this 
initially chaotic variation will quickly die away. The interesting question is whether any 
residue remains-in particular whether normal regions can be 'trapped' like flux tubes 
in a superconductor. 

Because domains are most familar in the context of ferromagnetism it may be well to 
point out at the outset a crucial difference between that case and ours. The long-range 
dipole-dipole interaction between spins ensures that it is energetically favourable for a 
large ferromagnet to break up into domains with different magnetization directions. 
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However in the models we are considering, the source of the gauge field always involves 
the derivative of the order parameter (+), and vanishes for constant (4).  Thus there is 
no long-range force between differently oriented domains, and the true ground state 
necessarily has a spatially uniform (4). The phenomena we are concerned with are 
non-equilibrium effects. 

It is perhaps conceivable that in rather different theories domains might not be 
neutral with respect to some of the charges associated with gauge fields. However it is 
hard to see how domain formation in such cases could be energetically allowed. It is 
important to realize that even though the gauge field acquires a mass (Kislinger and 
Morley 1975) the effective interaction between non-neutral domains is still long-range. 
Physically, the situation is the same as for photons in a plasma. Because of the plasmon 
mass, charge fluctuations are shielded, but an unbalanced net charge will nevertheless 
yield a long-range Coulomb force. Net charge separation is energetically prohibitive. 

Another possibility is that the universe as a whole may be non-neutral, if it is open 
and expanding. But then its mean charge would define a particular direction in the 
group space so that the direction of symmetry breaking would be fixed by the initial 
conditions rather than by random choice, and would be everywhere the same. Thus no 
domain structure would arise. However, a small degree of non-neutrality would be 
compatible with domain structure. Initially at least, we shall assume the overall 
neutrality of the universe, but we shall return to this question later, in § 5 .  

Let us now consider the initial scale of the ‘protodomains’ formed as the universe 
cools below T,. At a temperature T < T,, the difference in free-energy density between 
states with (4 )  equal to zero and to its equilibrium value (i.e. between ‘normal’ and 
‘ordered’ phases) is easily found from (3)-(5) to be 

Af = ig2((4>2)2. (6)  

Afo=sg 77 

It rises rapidly towards its zero-temperature value 
1 2 4  

as T falls below T,. The correlation length 5 which determines the scale of fluctuations 
in 4 is the inverse of the scalar-meson mass (the ‘Higgs scalar’), given approximately by 

5-’ = ms = gI(4)I. (7) 

It is of course infinite at the phase transition. As in a superconductor there is a second 
correlation length, the penetration depth A given by 

~ - ‘ = m  v - - el(4)l 

which is of importance in discussing ‘angular’ oscillations, i.e. oscillations in the 
orientation of 4. However ‘radial’ oscillations, in the magnitude of 4, are controlled by 
5. 

If Tis only a little less than T,, a fluctuation back to 4 = 0 remains quite probable. 
The free energy associated with such a fluctuation with scale 4 is, ignoring factors of 
order unity, 

(2O3Af = l(4>l/g. 

This fluctuation will have high probability so long as the free energy required is 
substantially less than the thermal energy T. (We use units in which Boltzmann’s 
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constant, as well as h and c, is equal to unity.) The two are equal when 

at which time the correlation length 6 is given by 

For weak coupling this is not too different from g2Tc, or roughly 8’77. 
Thereafter fluctuations back to 4 = 0 rapidly become less likely, so that the 

distinction between normal and ordered phases is well established as is that between 
ordered phases corresponding to well separated points on M (i.e. very different 
orientations of (4)). The correlation length at this time thus determines the initial scale 
of the protodomains. Beyond this point it continues to fall, but the fluctuations are no 
longer large enough to disturb the established long-range order. In fact the scale of the 
domains over which (#) is nearly constant will tend to grow with time because of the 
(VC$)’ term in the energy. 

4. Topology of domain structures 

Our next task is to examine the possible geometric configurations of the initial domain 
structure. It will be convenient to discuss a somewhat idealized model. Let us suppose 
that space is divided into cells of variable shape and size, with a mean dimension of the 
order of the correlation length obtained above, and that within each cell (4) is initially 
nearly constant, but with random variation from one cell to another. Although in reality 
(4) may be expected to vary continuously from point to point, this model seems to be a 
reasonable idealization of the kind of structure we might expect. 

The interesting question is what happens on the boundaries where two or more cells 
meet. Consider two cells characterized by (4) = 4’ and ( 4 )  = #2 respectively, with a 
common boundary surface. If there is a continuous path in the manifold M joining the 
points 41 and #2, then because of the (Vq5)’ term in the energy it will be energetically 
favourable for the width of the region over which (4) varies from to q52 to expand, 
leaving a smoothly varying (4) in place of a sharp boundary. However, if M is 
disconnected, and and #2 belong to different connected components, then no 
smooth transition is possible. One can pass from one ordered phase to the other only by 
going through a normal region. Hence a wall of normal phase will be formed between 
the two cells. 

The simplest example of a model with disconnected M is the case N = 1 of the model 
described in 0 2. In that case there is only a discrete reflection symmetry, and no gauge 
fields. The manifold M is the O-sphere So comprising two points corresponding to the 
two possible values of (#), for example at T = 0, (4) = fq. In this case there will be two 
distinct, though internally indistinguishable, ordered phases. Any large enough volume 
of space will be divided more or less equally between the two with thin walls of normal 
phase, where (4) passes through zero, separating them. The width of the domain wall is 
determined by a balance between Af and the (V4)’ term in the energy, and is in fact the 
correlation length 6. (A solution with a plane boundary separating two domains is 
effectively a ‘soliton’. See for example, Scott et a1 (1973).) 
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The subsequent development of this complex geometric structure is governed 

(10) 

largely by the surface tension (T of the wall which is of order (Af or, by (6) and (7), 

(T = 5Af = s1(4>13. 

(We again ignore factors of order unity.) Because of surface tension, the area of wall 
will tend to decrease with time. Thus in any fixed finite volume one of the two ordered 
phases will eventually tend to predominate. The rate at which this happens and the 
scale of the structure after a given time we shall discuss later. 

Domain walls can form only if M is disconnected, i.e. if as in the N = 1 model there is 
a discrete broken symmetry. There may of course be continuous symmetries that are 
broken too. If M has two connected components, the structure produced is a kind of 
emulsion of two (similar) ordered phases. The walls can never terminate and must 
either form closed surfaces or extend to infinity. If the number of connected compo- 
nents is three or more we have a more complicated structure, an emulsion of several 
phases. 

Let us now consider what happens when three cells meet along an edge. We suppose 
that the corresponding expectation values 41, &,& belong to the same connected 
component of M, so that no pair of cells is separated by a domain wall. Then as we go 
around the edge we will find the expectation value (4) following a smooth path in M 
from 4' to + z ,  to 43r and back to c$~. Now if this closed path can be continuously 
deformed in M to a point, i.e. if it is null-homotopic, then the ordered phase can be 
extended in a continuous manner into the region of the edge. All three domains can 
then fuse, leaving only a smoothly varying (4) .  But if it cannot be so deformed then a 
region of normal phase will be trapped along the edge, exactly like a vortex filament in a 
superfluid (see for example Putterman 1974) or a flux tube in a type I1 superconductor 
(see Schrieffer 1964). The Nielsen-Olesen (1973) string is an example of a solution of 
this kind, essentially for the model of 0 2 with N = 2 ,  in which case the manifold M is a 
circle, S'. Note that although the gauge field does not seem to play an important 
topological role, it is vital in making the energy per unit length of the string finite. 

We note that the strings have a tension whose order of magnitude is 

P =t2Af=I(4)l2. (1 1) 

What is relevant in deciding whether strings can exist is the first homotopy group 
r l ( M ) ,  comprising the homotopy classes of maps from S' into M, i.e. of closed paths in 
M (see Hu 1959). If M is simply connected, .rrl(M) is trivial and strings are impossible. 
But whenever .rrl(M) is nontrivial they will occur. Not all edges will of course form 
strings but we can estimate how many do so if we make two simple assumptions: that the 
initial choices of (4) in different cells are uncorrelated, and that where two cells meet 
and fuse (4) varies along the shortest path in M between the two original values and 
r$z. Then we find for the case where A4 is a circle that one in four of the original edges 
wi!l form into strings. 

The number of independent generators of .rrl(M) influences the type of structure 
that the strings can form. If it is one, as when Mis a circle, there is only one basic type of 
string. In principle n strings might coalesce to form a multiple string around which the 
phase of ( 4 )  varies by 2 n r ,  though whether this is energetically favoured depends on 
the details of the model (essentially on the ratio e/g, as in the distinction between type I 
and type I1 superconductors-see Schrieffer 1964). If r l ( M )  has more than one 
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generator, then several types of strings can exist. We may then expect to find vertices 
where three strings join, and space will be filled with a three-dimensional network. 

We can go on to discuss what happens at a vertex where four cells meet with order 
parameters 41, 42, &, 44. These points may be regarded as the vertices of a 
(curvilinear) tetrahedron in M, with edges representing the paths along which (4) varies 
across each bounding surface. We assume that each closed circuit, such as 41-+2-43- 

&, is null-homotopic, so that the faces of the tetrahedron can be filled in without leaving 
M. If the closed surface so formed can be shrunk to a point in M, then (4) can be 
extended continuously into the region around the vertex. But if not, then a normal 
region will be trapped, as in the monopole solution of ’t Hooft (1974). For monopoles 
to exist we require that the second homotopy group .rr2(M) be nontrivial, as it is for the 
N = 3 model. (Compare Krive and Chudnovskii (1975).) 

Such objects if they do exist will be localized structures with a scale typical of 
elementary particles, and regarded as such. They will not be significant on a cosmic 
scale, and we shall not discuss them further. (The considerations of this paper might 
perhaps be relevant in estimating the probable density of monopoles. If M is a sphere 
S 2  then under the same assumptions as before one in eight of the initial vertices should 
form a monopole. However to obtain an estimate of present density would require a 
careful study of annihilation mechanisms, which are its principal determinant.) 

We have seen that to trap a k -dimensional normal region within the ordered phase 
requires, for k = 0 or 1, that the homotopy group .rr2+(M) be nontrivial, i.e. that there 
exist non-contractible maps of S2-k into M. This criterion applies also for k = 2, 
although tro(M) is not strictly speaking a homotopy group: it has no group structure but 
represents merely the number of connected components of M (see for example Hilton 
and Wylie 1960, p 276). 

It is perhaps amusing to note that if .rro(M), .rrl(M) and .rr2(M) are all trivial, we can 
still obtain a topological characteristic of our particular universe (if it is finite and 
homeomorphic to S 3 )  by considering 7r3(M): namely, the homotopy class of the 
function x + (+(x)), which is with high probability an invariant once we are well past the 
transition temperature. However it is hard to envisage any possible physical relevance 
for it. 

If we are interested in cosmic structures, we have then two candidates: domain walls 
when .rro(M) is nontrivial and strings when .rrl(M) is. The next question we must ask is 
how these structures would evolve, once formed. 

5. Evolution of domain walls and strings 

The motion of a domain wall is controlled primarily by its surface tension (equation 
(10)). The corresponding surface energy is also the inertial mass of the wall. In other 
words the wall is ‘massless’ in the sense usually implied in talking of massless strings: its 
action integral is simply proportional to the three-volume it sweeps out in space-time. 
As a result of the equality between areal mass density and surface tension the velocity 
of waves of short wavelength along the wall is the velocity of light. 

The surface is in local equilibrium when its mean curvature is zero, i.e. when the two 
principal radii of curvature are e ual and opposite, ztR say. (The simplest nontrivial 
example is the catenoid ( x 2  + y2)” = cosh z . )  Any deviation from local equilibrium will 
lead to waves spreading out rapidly from their point of origin. Among the possible 
damping mechanisms the most obvious is the interaction of the walls with surrounding 

9 
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matter. A wall moving with velocity U through matter of density p will experience a 
retarding force per unit area 

cyv = apliv (12) 
where a is a numerical constant depending on the reflectivity of the wall and Li a suitably 
defined mean velocity of the matter particles. The characteristic time for damping out 
short-wavelength oscillations is then 

td = 2u/cy. (13) 

Clearly it is important to estimate the degree of transparency of the walls. If it were 
possible for the domain structure to survive until near the present, this question would 
also have a more direct relevance to the possible observability of domains. It was from 
this point of view that it was tackled by Everett (1974). However, domain walls 
surviving so long can be ruled out by the argument of Zel’dovich er a1 (1974). 

In the very early stages the wall thickness 6 is comparable with the (relativistic) 
thermal wavelength T’. In fact at the time of formation of protodomains, identified in 
P 3, we have t T = g - 2 >  1. Thereafter, however, 5 falls rapidly to its limiting value of 
order T - ’ ,  and T decreases steadily though more slowly. Once it has fallen to a small 
fraction of T,-say T= 1 GeV which occurs at r = s-we can legitimately treat the 
domain walls as very thin, and replace them by sharp discontinuities across which the 
fields are related by boundary conditions of the usual type. 

Most of the significant evolution occurs during the radiation era, so we are mainly 
interested in the transparency of the walls to light. Let us consider an electromagnetic 
wave striking a domain wall. We suppose, as is now conventional, that the photon 
belongs to a multiplet of gauge bosons whose other members are very massive. Two 
very different situations can arise, depending on the precise model of symmetry 
breaking. If a different component of the field is massless on the far side of the wall then, 
as Everett (1974) showed, the probability of reflection is large. In that case the constant 
a in equation (12) will be of order unity and the motion of the walls will be heavily 
damped by radiation pressure. On the other hand if the electromagnetic field corres- 
ponds to the same component on both sides, as in the models considered by Zel’dovich 
e ta1  (1974), it is clear that the wall will be almost transparent and so little affected by 
radiation pressure. It is not hard to write down models of both types. 

In the latter case, one must examine other damping mechanisms-for example the 
absorption and emission of radiation-but none seems likely to be very effective. Thus 
the walls will continue to move with relativistic speeds, and the subsequent evolution 
will be more or less along the lines described by Zel’dovich et al. 

For the moment, however, let us assume that the walls are highly reflecting, so that a 
is of order unity, and 

4 a = p = T .  

Once Tis sufficiently below T, for U to have reached its asymptotic value, we then have 

td = g7 ’/ T (14) 
which grows like t 2 .  

Initially td is roughly of order 8/77, and therefore small compared to the length scale 
l / g 2 7  of the protodomains. Consequently the domain walls will evolve rather rapidly 
towards local equilibrium. Moreover isolated pockets of one phase surrounded by 
another will quickly disappear. In the case where M has two components, we are left 
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with an emulsion of two phases each occupying a single connected region (cf Broadbent 
and Hammersley 1957) and separated by a single, highly convoluted wall whose mean 
curvature is everywhere near zero. (The structure is in some ways rather similar to the 
matter-antimatter emulsion considered by Omnbs (197 l).) 

Such a configuration is stable against short-wavelength perturbations, but it cannot 
be completely stable. It is well known that the only stable infinite-area solution of 
Plateau’s problem (to find minimum-area surfaces of given perimeter) is the plane (see 
Thompson 1942). In general, waves shorter than a typical radius of curvature will be 
damped but disturbances of longer wavelength will grow exponentially in time. The 
equation of motion for small deviations from equilibrium is 

where l is the normal displacement and A the two-dimensional Laplace-Beltrami 
operator. Thus when R >> td, the characteristic time for growth of long-wavelength 
perturbations is R 2 / t d .  

Eventually the surface will jump to a new equilibrium configuration of smaller area 
which in turn will be unstable to yet longer wavelengths. The length scale 1 of the 
emulsion-the volume to wall-area ratio for any large enough volume-will therefore 
grow with time. Roughly, we may identify the characteristic time for growth of 1 with 
that for the long-wavelength perturbations, so that 

1 dl td - _-_ 
1 dt-1’‘ 

Hence E grows like the square root of the elapsed time, as one might expect from the 
diffusion-like character of the process. Since this is much faster than the slow growth of 
td, the approximation 1 >> td remains valid. However over a long period of time the 
growth of t d x  tZ leads to I a t3/’. Clearly therefore td will overtake I. It is easy to see 
that this happens when both are of the same order as the age of the universe; in fact 
when 

1 = Id = t = ti 2: 1 /GU, (16) 

where G is the Newtonian gravitational constant (which enters via the relation 
tT2 - 1/G1”). It is interesting to note that the very different mechanism envisaged by 
Zel’dovich et a1 yields a similar result for the time at which the scale of the emulsion 
becomes comparable with the radius of the universe. With the parameters chosen 
earlier we have tl = lo7 s, but because of its strong 7 dependence, proportional to vP3, 
tl is very model-dependent. 

The degree of inhomogeneity introduced into the universe by the gravitational 
effect of the domain walls (as shown by Zel’dovich et uI 1974) is of the order GmI = I/ t l .  
It is clearly unacceptably large unless either there are many domain walls remaining 
(I/tl < or none at all. The first alternative is implausible. Domain walls with the 
required spacing can be ruled out on observational grounds, at any rate if they are 
substantially reflecting. The second is impossible if we start from completely random 
initial choices of the order parameter. The typical scale of the emulsion can never much 
exceed the distance over which causal corrections are possible, i.e. the present radius of 
the universe. 
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There seems to be only one way of accommodating models that generate domain 
walls, namely, as Zel’dovich eta1 suggest, to allow a small initial bias. It would require 
only a minute non-neutrality in the initial state of the universe with respect to some 
‘charge’-related perhaps to the preference for matter over antimatter-to ensure a 
slight but consistent excess in the number of protodomains of one type. This excess 
would tend to become more pronounced with time and eventually lead to complete 
dominance of the preferred phase. It would not be hard to realize this case by suitable 
choice of model parameters. But such initial asymmetry is unaesthetic, and not at all in 
the spirit of spontaneous symmetry breaking. 

In all probability therefore we should rule out models with discrete symmetry 
breaking, which lead to domain walls-an interesting example of a restriction on 
elementary particle theories deriving from cosmology. 

There is no such objection to cosmic strings. A single domain wall in the universe 
(with the parameters chosen here) would have a mass far in excess of the accepted upper 
limit for the mass of the universe. By contrast, the mass of a string might be of order 
1 mg m-’, so that the total mass of a string of length equal to the current radius of the 
universe would be less than that of a minor planet. 

The evolution of the network of cosmic strings would in many respects be similar to 
that of walls, although of course there is only one local equilibrium configuration for a 
string-a straight line-in contrast to the infinite variety of surfaces of zero mean 
curvature. 

Consider a section of string with radius of curvature R. Because of its ‘massless- 
ness’, it experiences an initial acceleration 1/R. However there is a damping force 
arising as before from the interaction with other matter. If the effective (linear) cross 
section of the string is simply its width 6 then the ratio of retarding force to mass is the 
same as that found earlier for a wall. Thus we may assume that the damping time td is 
similar. It follows that the string will acquire a limitingvelocity td/R and the kink will be 
straightened out in a time of order R2/rd. 

As the strings move they will sometimes cross. When they do, they may be apt to 
change partners, leaving a pair of sharply kinked strings which straighten out in time, 
and so on. It is not entirely clear how far the existence of the topological invariants of 
strings studied by Khan (1975) might inhibit this exchange process. Assuming however 
that the exchange can occur, it is clear that occasionally a small closed loop may 
form which then shrinks to a point and vanishes. Thus the overall length of string 
will decrease, or equivalently the length scale 1 will increase, on a time scale 12/ td ,  

exactly as for domain walls. With most choices of parameters, this means that the 
scale now is comparable with the radius of the universe. We can expect only one 
string within the visible universe, so that looking for cosmic strings directly would be 
pointless. 

If the manifold of equilibrium states is more complex, so that .rrl(M) has more than 
one generator, then as we have seen a network of strings can be formed. Although 
superficially such a network might seem to have more stability its evolution would 
probably not in fact be much slower. It seems most unlikely that any structure could 
have survived until the present on a small enough scale to be directly visible. 

Nonetheless the existence of such a network of cosmic strings may have had 
profound effects on the earlier history of the universe, at a stage where the number of 
strings was large. For example, strings can produce significantly local inhomogeneities 
by their interaction with matter. The details of this mechanism and its effectiveness 
require further study. 
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6. Condusions and discussion 

It may be well to begin by recalling our basic assumptions. We have assumed that the 
universe is correctly described by a spontaneously broken gauge theory exhibiting a 
phase transition at a critical temperature T,, above which the symmetry is restored. We 
have taken for granted the hot big-bang model of the universe, with no maximum 
temperature, whence it follows that in its very early history the universe was above T,, in 
the ‘normal’ phase. Finally we have generally assumed the overall neutrality of the 
universe with respect not only to electric charge but also to all the other charges 
associated with gauge fields. 

On this basis we showed that a domain structure can be expected to arise. The 
topological character of this structure depends on the homotopy groups r k  ( M )  of the 
manifold Mof degenerate vacua. Domain walls can form if ?ro(M) is nontrivial, i.e. if M 
is non-connected. If it has n connected components we find an n-phase emulsion. The 
formation of cosmic strings requires that r l ( M )  be nontrivial, i.e. that M is not formed 
of simply connected components. Finally, ‘monopoles’ can form if r 2 ( M )  is nontrivial. 

The later evolution of domain walls is governed by their surface tension and their 
interaction with matter. Different types of domain walls can occur with very different 
transparency, but in all cases the overall scale of the structure will grow with time. In 
general we may expect it now to be comparable with the radius of the universe. Domain 
walls on anything like this scale can be ruled out (Zel’dovich et af 1974) because their 
gravitational effect would lead to unacceptable anisotropy in the black-body back- 
ground radiation. The only way of accommodating theories with spontaneously broken 
discrete symmetries (and hence domain walls) is to relax the requirement of complete 
neutrality of the universe, so that one of the ordered phases is slightly preferred and 
eventually comes to occupy all of space. However this is not a very attractive solution, 
and it may be better to regard this as an argument against such theories. 

Networks of strings will evolve in a similar way under the combined effects of 
tension and interaction with matter. Once again, the scale of the structure will grow 
with time, probably at a similar rate. One cannot expect to find significant numbers of 
cosmic strings in the visible universe now, but their presence may have had an important 
effect on the earlier evolution of the universe. 
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